Mouse oocytes within germ cell cysts and primordial follicles contain a Balbiani body.

نویسندگان

  • Melissa E Pepling
  • James E Wilhelm
  • Ashley L O'Hara
  • Grant W Gephardt
  • Allan C Spradling
چکیده

The Balbiani body or mitochondrial cloud is a large distinctive organelle aggregate found in developing oocytes of many species, but its presence in the mouse has been controversial. Using confocal and electron microscopy, we report that a Balbiani body does arise in mouse neonatal germline cysts and oocytes of primordial follicles but disperses as follicles begin to grow. The mouse Balbiani body contains a core of Golgi elements surrounded by mitochondria and associated endoplasmic reticulum. Because of their stage specificity and perinuclear rather than spherical distribution, these clustered Balbiani body mitochondria may have been missed previously. The Balbiani body also contains Trailer hitch, a widely conserved member of a protein complex that associates with endoplasmic reticulum/Golgi-like vesicles and transports specific RNAs during Drosophila oogenesis. Our results provide evidence that mouse oocytes develop using molecular and developmental mechanisms widely conserved throughout the animal kingdom.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arrest at the diplotene stage of meiotic prophase I is delayed by progesterone but is not required for primordial follicle formation in mice

BACKGROUND In mammalian females, reproductive capacity is determined by the size of the primordial follicle pool. During embryogenesis, oogonia divide mitotically but cytokinesis is incomplete so oogonia remain connected in germ cell cysts. Oogonia begin to enter meiosis at 13.5 days postcoitum in the mouse and over several days, oocytes progress through the stages of meiotic prophase I arresti...

متن کامل

I-18: The Role of Sex Chromosomes in Female Germ Cell Differentiation

Background When gonadal sex reversal occurs in mammalian species, the resultant XX males and XY females become infertile or subfertile, suggesting critical roles of sex chromosomes in germ cell differentiation. The objective of our study is to clarify the mechanism of infertility in the B6.YTIR (XY) sex-reversed female mouse, which can be attributed to a failure in the second meiotic division i...

متن کامل

PAR6, A Potential Marker for the Germ Cells Selected to Form Primordial Follicles in Mouse Ovary

Partitioning-defective proteins (PAR) are detected to express mainly in the cytoplast, and play an important role in cell polarity. However, we showed here that PAR6, one kind of PAR protein, was localized in the nuclei of mouse oocytes that formed primordial follicles during the perinatal period, suggesting a new role of PAR protein. It is the first time we found that, in mouse fetal ovaries, ...

متن کامل

Mouse early oocytes are transiently polar: three-dimensional and ultrastructural analysis.

The oocytes of many invertebrate and non-mammalian vertebrate species are not only asymmetrical but also polar in the distribution of organelles, localized RNAs and proteins, and the oocyte polarity dictates the patterning of the future embryo. Polarily located within the oocytes of many species is the Balbiani body (Bb), which in Xenopus is known to be associated with the germinal granules res...

متن کامل

Suppression of Notch signaling in the neonatal mouse ovary decreases primordial follicle formation.

Notch signaling directs cell fate during embryogenesis by influencing cell proliferation, differentiation, and apoptosis. Notch genes are expressed in the adult mouse ovary, and roles for Notch in regulating folliculogenesis are beginning to emerge from mouse genetic models. We investigated how Notch signaling might influence the formation of primordial follicles. Follicle assembly takes place ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 1  شماره 

صفحات  -

تاریخ انتشار 2007